In Vivo Characterization of Dynein-Driven nanovectors Using Drosophila Oocytes

نویسندگان

  • Nadège Parassol
  • Céline Bienvenu
  • Cécile Boglio
  • Sébastien Fiorucci
  • Delphine Cerezo
  • Xiao-Min Yu
  • Guilhem Godeau
  • Jacques Greiner
  • Pierre Vierling
  • Stéphane Noselli
  • Christophe Di Giorgio
  • Véronique Van De Bor
چکیده

Molecular motors transport various cargoes including vesicles, proteins and mRNAs, to distinct intracellular compartments. A significant challenge in the field of nanotechnology is to improve drug nuclear delivery by engineering nanocarriers transported by cytoskeletal motors. However, suitable in vivo models to assay transport and delivery efficiency remain very limited. Here, we develop a fast and genetically tractable assay to test the efficiency and dynamics of fluospheres (FS) using microinjection into Drosophila oocytes coupled with time-lapse microscopy. We designed dynein motor driven FS using a collection of dynein light chain 8 (LC8) peptide binding motifs as molecular linkers and characterized in real time the efficiency of the FS movement according to its linker's sequence. Results show that the conserved LC8 binding motif allows fast perinuclear nanoparticle's accumulation in a microtubule and dynein dependent mechanism. These data reveal the Drosophila oocyte as a new valuable tool for the design of motor driven nanovectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila.

During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle or...

متن کامل

Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes.

Mass movements of cytoplasm, known as cytoplasmic streaming, occur in some large eukaryotic cells. In Drosophila oocytes there are two forms of microtubule-based streaming. Slow, poorly ordered streaming occurs during stages 8-10A, while pattern formation determinants such as oskar mRNA are being localized and anchored at specific sites on the cortex. Then fast well-ordered streaming begins dur...

متن کامل

Oocyte Patterning: Dynein and Kinesin, Inc.

Recent studies show that dynein and kinesin are both required for cargo transport to the anterior cortex of the Drosophila oocyte. The orientation of microtubules in the oocyte suggests that kinesin mediates anterior transport indirectly, by activating and/or recycling dynein.

متن کامل

P-120: Meiotic Spindle Visualization and Zona Pellucida Birefringence in Relation to Morphology of In Vivo and In Vitro Matured Human Oocytes of In Vivo and In Vitro Matured Human Oocytesof In Vivo and In Vitro Matured Human Oocytes

Background: The meiotic spindle plays an important role in the oocyte during chromosome alignment and separation at meiosis. The zona pellucid (ZP) is a dynamic matrix composed of filaments with the properties that might reflect the history of oocyte cytoplasmic maturation. Since, spindle and ZP in living oocytes are highly birefringent, their structures can be viewed noninvasively by using a P...

متن کامل

The Cytoplasmic Dynein and Kinesin Motors Have Interdependent Roles in Patterning the Drosophila Oocyte

BACKGROUND Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013